If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-32n+63=0
a = 1; b = -32; c = +63;
Δ = b2-4ac
Δ = -322-4·1·63
Δ = 772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{772}=\sqrt{4*193}=\sqrt{4}*\sqrt{193}=2\sqrt{193}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-2\sqrt{193}}{2*1}=\frac{32-2\sqrt{193}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+2\sqrt{193}}{2*1}=\frac{32+2\sqrt{193}}{2} $
| 5(1-x)=5-5x | | 3x+12=3x−18 | | 2/3*1/10=n | | 9,5x+0,5x-8+2,5x=0,5x | | 7.25w=-58 | | 2+x=2-10 | | 4x-18+2x=180 | | y+6.82=13.82 | | -.5x+2=0.25(-2x+4) | | 3x+12=−5x−18 | | y+13.82=6.82 | | y-13.82=6.82 | | 3x+70+5=180 | | 0.13y=0.91 | | 35=18h-1 | | 5x+4=04x-2=0 | | 136x-1=45 | | 15.5z=-7.5 | | 5+2x=4(-x+3)-25 | | (x^2-7x+12)*(x+6)=0 | | 6x+8=2(4+3x) | | 5+2x=-4x(-x+3)-25 | | 73x71=N | | 8x-4x+8=8(x+2) | | 12(y-1)+12(y+1)=24 | | 4q=4 | | -140=-10b | | 10.5=3+1.5x | | /9z+1=9z-1 | | 6(y+1)-y=4y=9 | | 4x-7x=5x+1 | | 3(x-8)-5x=-8 |